Mechanism of reaction of allylamine with the quinoprotein methylamine dehydrogenase.

نویسندگان

  • V L Davidson
  • M E Graichen
  • L H Jones
چکیده

Allylamine did not serve as an efficient substrate for methylamine dehydrogenase (EC 1.4.99.3) in a steady-state assay of activity and appeared to act as a competitive inhibitor of methylamine oxidation by methylamine dehydrogenase. Transient kinetic studies, however, revealed that allylamine rapidly reduced the tryptophan tryptophylquinone (TTQ) cofactor of methylamine dehydrogenase. The rate of TTQ reduction by allylamine was 322 s-1, slightly faster than the rate of reduction by methylamine. These data were explained by a kinetic mechanism in which allylamine and methylamine are alternative substrates for methylamine dehydrogenase. The apparent competitive inhibition by allylamine is due to a very slow rate of release of the aldehyde product, 0.28 s-1, relative to a rate of 18.6 s-1 for the release of the aldehyde product of methylamine oxidation. A reaction mechanism is proposed for the oxidative deamination of allylamine by methylamine dehydrogenase. This mechanism is discussed in relation to the reaction mechanisms of topa-bearing quinoprotein amine oxidases, the flavoprotein monoamine oxidase and the mammalian semicarbazide-sensitive amine oxidase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady-state kinetic analysis of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans.

A steady-state kinetic analysis was performed of the reaction of methylamine and phenazine ethosulphate (PES) with the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. Experiments with methylamine and PES as varied-concentration substrates produced a series of parallel reciprocal plots, and when the concentrations of these substrates were varied in a constant ratio a linear...

متن کامل

Computational Study of the Mechanism, Reaction Rate and Thermochemistry of Atmospheric Oxidation of Methylamine with Singlet Oxygen

The reaction of CH₃NH₂ with O₂ on the singlet potential energy surfaces (PES) was carried out using the B3LYP, CCSD(T) and G3B3 theoretical approaches along with 6-311++G(3df,3pd) basis set. The suggested mechanism for the title reaction consists of one pre-reactive complex. From the pre-reactive complex, nine types of products, CH2NH+H2O2, CH3NH+OOH,...

متن کامل

Localization of periplasmic redox proteins of Alcaligenes faecalis by a modified general method for fractionating gram-negative bacteria.

A lysozyme-osmotic shock method is described for fractionation of Alcaligenes faecalis which uses glucose to adjust osmotic strength and multiple osmotic shocks. During phenylethylamine-dependent growth, aromatic amine dehydrogenase, azurin, and a single cytochrome c were localized in the periplasm. Their induction patterns are different from those for the related quinoprotein methylamine dehyd...

متن کامل

Factors affecting the production of pyrroloquinoline quinone by the methylotrophic bacterium W3A1.

Two variants of the methylotrophic bacterium W3A1, designated W3A1-S (slimy) and W3A1-NS (nonslimy), were compared with respect to their ability to grow in batch culture on the C1 substrates methylamine, methanol, and trimethylamine. Substrate utilization, cell density, pH, cellular and soluble polysaccharide production, and concentrations of the enzymes methylamine dehydrogenase, trimethylamin...

متن کامل

Catalytic mechanism of quinoprotein methanol dehydrogenase: A theoretical and x-ray crystallographic investigation.

The catalytic mechanism of the reductive half reaction of the quinoprotein methanol dehydrogenase (MDH) is believed to proceed either through a hemiketal intermediate or by direct transfer of a hydride ion from the substrate methyl group to the cofactor, pyrroloquinoline quinone (PQQ). A crystal structure of the enzyme-substrate complex of a similar quinoprotein, glucose dehydrogenase, has rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 308 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1995